RACAL INSTRUMENTS 1260-45 SWITCH MODULE

PUBLICATION NO. 980673-008

EADS North America Defense Test and Services, Inc.
4 Goodyear, Irvine, CA 92618
Tel: (800) 722-2528, (949) 859-8999; Fax: (949) 859-7139
info@eads-nadefense.com
sales@eads-nadefense.com
helpdesk@eads-nadefense.com
http://www.eads-nadefense.com

PUBLICATION DATE: March 25, 2005
Copyright 1993 by EADS North America Defense Test and Services, Inc. Printed in the United States of America. All rights reserved. This book or parts thereof may not be reproduced in any form without written permission of the publisher.

THANK YOU FOR PURCHASING THIS EADS NORTH AMERICA DEFENSE TEST AND SERVICES PRODUCT

For this product, or any other EADS North America Defense Test and Services, Inc. product that incorporates software drivers, you may access our web site to verify and/or download the latest driver versions. The web address for driver downloads is:

http://www.eads-nadefense.com/downloads

If you have any questions about software driver downloads or our privacy policy, please contact us at

> info@eads-nadefense.com

WARRANTY STATEMENT

All EADS North America Defense Test and Services, Inc. products are designed and manufactured to exacting standards and in full conformance to EADS ISO 9001:2000 processes.

This warranty does not apply to defects resulting from any modification(s) of any product or part without EADS North America Defense Test and Services, Inc. express written consent, or misuse of any product or part. The warranty also does not apply to fuses, software, non-rechargeable batteries, damage from battery leakage, or problems arising from normal wear, such as mechanical relay life, or failure to follow instructions.

This warranty is in lieu of all other warranties, expressed or implied, including any implied warranty of merchantability or fitness for a particular use. The remedies provided herein are buyer's sole and exclusive remedies.

For the specific terms of your standard warranty, or optional extended warranty or service agreement, contact your EADS North America Defense Test and Services, Inc. customer service advisor. Please have the following information available to facilitate service.

1. Product serial number
2. Product model number
3. Your company and contact information

You may contact your customer service advisor by:

E-Mail:	Helpdesk@eads-nadefense.com	
Telephone:	+18007223262	(USA)
Fax:	+19498597309	(USA)

RETURN of PRODUCT

Authorization is required from EADS North America Defense Test and Services, Inc. before you send us your product for service or calibration. Call or contact the Customer Support Department at 1-800-722-3262 or 1-949-859-8999 or via fax at 1-949-859-7139. We can be reached at: helpdesk@eads-nadefense.com.

PROPRIETARY NOTICE

This document and the technical data herein disclosed, are proprietary to EADS North America Defense Test and Services, Inc., and shall not, without express written permission of EADS North America Defense Test and Services, Inc., be used, in whole or in part to solicit quotations from a competitive source or used for manufacture by anyone other than EADS North America Defense Test and Services, Inc. The information herein has been developed at private expense, and may only be used for operation and maintenance reference purposes or for purposes of engineering evaluation and incorporation into technical specifications and other documents which specify procurement of products from EADS North America Defense Test and Services, Inc.

DISCLAIMER

Buyer acknowledges and agrees that it is responsible for the operation of the goods purchased and should ensure that they are used properly and in accordance with this handbook and any other instructions provided by Seller. EADS North America Defense Test and Services, Inc. products are not specifically designed, manufactured or intended to be used as parts, assemblies or components in planning, construction, maintenance or operation of a nuclear facility, or in life support or safety critical applications in which the failure of the EADS North America Defense Test and Services, Inc. product could create a situation where personal injury or death could occur. Should Buyer purchase EADS North America Defense Test and Services, Inc. product for such unintended application, Buyer shall indemnify and hold EADS North America Defense Test and Services, Inc., its officers, employees, subsidiaries, affiliates and distributors harmless against all claims arising out of a claim for personal injury or death associated with such unintended use.

FOR YOUR SAFETY

Before undertaking any troubleshooting, maintenance or exploratory procedure, read carefully the WARNINGS and CAUTION notices.

CAUTION

RISK OF ELECTRICAL SHOCK DO NOT OPEN

This equipment contains voltage hazardous to human life and safety, and is capable of inflicting personal injury.

If this instrument is to be powered from the AC line (mains) through an autotransformer, ensure the common connector is connected to the neutral (earth pole) of the power supply.

Before operating the unit, ensure the conductor (green wire) is connected to the ground (earth) conductor of the power outlet. Do not use a two-conductor extension cord or a three-prong/two-prong adapter. This will defeat the protective feature of the third conductor in the power cord.

Maintenance and calibration procedures sometimes call for operation of the unit with power applied and protective covers removed. Read the procedures and heed warnings to avoid "live" circuit points.

Before operating this instrument:

1. Ensure the proper fuse is in place for the power source to operate.
2. Ensure all other devices connected to or in proximity to this instrument are properly grounded or connected to the protective third-wire earth ground.

If the instrument:

- fails to operate satisfactorily
- shows visible damage
- has been stored under unfavorable conditions
- has sustained stress

Do not operate until, performance is checked by qualified personnel.

Racal Instruments

EC Declaration of Conformity

We

Racal Instruments Inc.
4 Goodyear Street
Irvine, CA 92718
declare under sole responsibility that the
1260-45A CRIMP Signal Matrix module, P/N 407052-001 1260-45A IDC Signal Matrix module, P/N 407052-101
1260-45B IDC Signal Matrix module, P/N 407052-102
1260-45B CRIMP Signal Matrix module, P/N 407052-002
1260-45C CRIMP Signal Matrix module, P/N 407052-003 1260-45C IDC Signal Matrix module, P/N 407052-103

They conform to the following Product Specifications:
Safety: EN61010-1:1993+A2:1995
EMC: EN61326:1997+A1:1998
Supplementary Information:
The above specifications are met when the product is installed in a Racal Instruments certified mainframe with faceplates installed over all unused slots, as applicable

The product herewith complies with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC (modified by 93/68/EEC).

Irvine, CA, May 14, 2002

This page was left intentionally blank.

NOTE FOR SYSTEMS WITH 1260-OPT 01T

The "Module-Specific Syntax" section of this manual shows the command syntax for the 1260-01S Smart Card. If you are using the newer 1260-01T Smart Card, the commands will NOT work as shown.

Consult the 1260-01T Manual for a description of the commands which may be used with the 126001T Smart Card.

The channel numbers described in this manual are valid for the 1260-01T. The channel numbers continue to be used for the 1260-01T.

The syntax of the commands which use channel numbers has changed for those cards controlled by the 1260-01T.

The new syntax used to close a channel is:
CLOSE (@ <module address> (<channel>))
For example, with for a relay module whose <module address> is set to 7 , closing <channel> 0 is performed with the command:

CLOSE (@ 7 (0))
Using the older 1260-01S, the command would be (as shown in this manual):
CLOSE 7.0
Many other command syntax differences exist. Please consult chapter 2 of the 1260-01T manual for a description of the commands which are available for the 1260-01T.

Control Information for the 1260-45 (A, B, and C)

The following information describes the control-register-to-relay-channel mapping for a 1260-45 Relay Module. This information may be used to control a 1260-45 when using a 1260-01T in the register-based mode of operation.

The relays used on this module are latching relays. They stay closed even if power is removed. However, guard relays isolate the matrix from the edge connector when power is removed.

A variety of control registers are used to control the matrix relays. These control registers are accessible by writing to memory locations in the A24 address space. The A24 address of each control register is based on three items:

- the A24 Offset assigned to the 1260-01T by the Resource Manager
- the Module Address assigned to the relay module with DIP Switch SW-1
- which control register to write to (Control Register 0 through 5)

The "A24 Base Address" of the 1260-45 module can be computed by:
(A24 Address Assigned to 1260-01T) $+\left(\right.$ Module Address $\left.\times 400_{16}\right)+1$
For example, suppose the following setup:
A24 Address Assigned to 1260-01T by Resource Manager $=204000_{16}$
Module Address of 1260-45 = 7
Then the "A24 Base Address" for the 1260-45 Module would be:

$$
\begin{aligned}
& 204000_{16}+\left(7 \times 400_{16}\right)+1= \\
& 204000_{16}+1 \mathrm{COO}_{16}+1= \\
& 205 \mathrm{CO1}_{16}
\end{aligned}
$$

Control Registers are located at offsets from the "A24 Base Address" of the module. Control Registers are located only at odd addresses. The following Control Registers are implemented by the 1260-45:

Designator	Offset from A24 Base Addr	Description
CROWADDR1	0	Holds Row to Close, Channels 0000 thru 1315
CROWADDR2	2	Holds Row to Close, Channels 2000 thru 3315
OROWADDR1	4	Holds Row to Open, Channels 0000 thru 1315
OROWADDR2	6	Holds Row to Open, Channels 0000 thru 3315
CWADDR1	8	Write Address for columns 0 thru 7 of selected row
CWADDR2	A (hexadecimal)	Write Address for columns 8 thru 15 of selected row
GRDADDR	C (hexadecimal)	Control Address for Guard Relays

NOTE: When using VISA functions, such as viln8() and viOut8(), the base A24 offset of the 126001T is already included by VISA. Therefore, when using a function such as viOut8() to write the value A7 (hex) to CWADDR1 in the example above, do NOT include the A24 in the function call:

Thus, the following function call may be used to write the value C6 to Control Register CWADDR1 of a 1260-45 at module address 7 :
viOut8(hdl, 0x1C09, 0xA7);

Relays are operated in parallel, up to all 16 in a column at one time. Relays are selected for operation by writing to the CWADDR1 and CWADDR2 Control Registers before writing to CROWADDR1 or CROWADDR2 (for closing relays) or OROWADDR1 or OROWADDR2 (for opening relays).

The CWADDR1 and CWADDR2 together form a 16-bit control register which defines which of the 16 -relays in the selected row will be operated. This is shown in the table below:

Control Register Bit	Controls Column of Selected Row	Bit Weight
CWADDR1, bit 0	0	0×01
CWADDR1, bit 1	1	0×02
CWADDR1, bit 2	2	0×04
CWADDR1, bit 3	3	0×08
CWADDR1, bit 4	4	0×10
CWADDR1, bit 5	5	0×20
CWADDR1, bit 6	6	0×40
CWADDR1, bit 7	7	0×80
CWADDR2, bit 0	8	0×01
CWADDR2, bit 1	9	0×02
CWADDR2, bit 2	10	0×04
CWADDR2, bit 3	11	0×08
CWADDR2, bit 4	12	0×10
CWADDR2, bit 5	13	0×20
CWADDR2, bit 6	14	0×40
CWADDR2, bit 7	15	0×80

The following procedure may be used to open the relays in a selected row:

1) Determine which OROWADDR Control Register that will be used. For Channels 0000 through 1315, use OROWADDR1; for Channels 2000 through 3315, use OROWADDR2.
2) Determine which columns of the row are to be opened. Form the control values for CWADDR1 and CWADDR2 by OR-ing the bit weights for the desired relays. For example, if columns $0,3,12$, and 13 are to be opened, the value 9_{16} would be used for CWADDR1 and 30_{16} would be used for CWADDR2. Write the calculated values to CWADDR1 and CWADDR2 (using ViOut8() or equivalent)
3) Write one of the following control values to OROWADDR1 or OROWADDR2, depending on which row you wish to operate.
1. 1 : to open relays in row 0
2. 2 : to open relays in row 1
3. 4 : to open relays in row 2
4. 8 : to open relays in row 3
4) Wait 4 milliseconds
5) Write the value 0 to OROWADDR1 or OROWADDR2

The following procedure may be used to close the relays in a selected row:

1) Determine which CROWADDR Control Register that will be used. For Channels 0000 through 1315, use CROWADDR1; for Channels 2000 through 3315, use CROWADDR2.
2) Determine which columns of the row are to be closed. Form the control values for CWADDR1 and CWADDR2 by OR-ing the bit weights for the desired relays. For example, if columns 1, 2, 5, 10, and 15 are to be closed, the value 26_{16} would be used for CWADDR1 and 84_{16} would be used for CWADDR2. Write the calculated values to CWADDR1 and CWADDR2 (using ViOut8() or equivalent)
3) Write one of the following control values to CROWADDR1 or CROWADDR2, depending on which row you wish to operate.
1. 1 : to close relays in row 0
2. 2 : to close relays in row 1
3. 4 : to close relays in row 2
4. 8 : to close relays in row 3
4) Wait 4 milliseconds
5) Write the value 0 to CROWADDR1 or CROWADDR2

Example:

Close Channel 2312, or matrix group 2, row 3, column 12:

1)	Write 0 to CWADDR1
2)	Write 10_{16} to CWADDR2 (this selects column 12)
3)	Write 8 to CROWADDR1 (this selects row 3)
4)	Wait 4 milliseconds
5)	Write 0 to CROWADDR1

In addition to the matrix, there are guard relays which isolate the matrix from the edge connector when the VXI chassis is powered down. When the chassis is powered up, the firmware on the 1260-01T will ensure that the guard relays are closed AFTER the firmware has opened all relays within the matrix. However, if direct manipulation of the guard relays is desired, the value 3 may be written to the control register GRDADDR to close the guard relays. The value 0 may be written to open all guard relays.

Table of Contents

Chapter 1 1-1
MODULE SPECIFICATION 1-1
General 1-1
1260-45 Module Specifications 1-1
Chapter 2 2-1
INSTALLATION INSTRUCTIONS 2-1
Unpacking and Inspection 2-1
Reshipment Instructions 2-1
Option 01 Installation 2-1
Module Installation 2-2
Chapter 3 3-1
MODULE SPECIFIC SYNTAX 3-1
Module Specific Command Syntax 3-1
Syntax 3-1
PDATAOUT Command 3-2
PSETUP Command 3-3
Connector Pin Configuration 3-3
Expansion and Configuration 3-10
Chapter 4 4-1
OPERATION 4-1
Theory of Operation 4-1
Relay Drive Circuitry 4-2
Chapter 5 5-1
OPTIONAL HARNESS ASSEMBLIES 5-1
Chapter 6 6-1
PRODUCT SUPPORT 6-1
Product Support 6-1
Warranty 6-1
Appendix A A-1
HOW TO CONFIGURE THE 1260-45 MATRIX MODULE A-1
Introduction A-1
Configuration A-1
Larger Matrices A-2
Example A-2
Summary A-2

List of Figures

Figure 3-1, 1260-45 User Connector Pin Configuration 3-4
Figure 3-2a, 1260-45 Matrix Pinouts 3-8
Figure 3-2b, 1260-45 Matrix Pinouts 3-9
Figure 3-3, Sample Expansion/Configuration Cable 3-11
Figure 4-1, Relay Drive Circuitry 4-3
Figure A-1, 1260-45 Connector "Rows and Columns" A-3
Figure A-2, J200 \& J202 Block Diagram A-3
Figure A-3, J201 \& J203 Block Diagram A-4
Figure A-4, 1260-45A Quad 4X16 Matrices A-4
Figure A-5, 1260-45B Dual 4X32 Matrices A-5
Figure A-6, 1260-45C Dual 8X16 Matrices A-5
Figure A-7, 1260-45B Configured as 4X64 Matrix A-6
Figure A-8, 1260-45B Configured as 8X64 Matrix A-6

List of Tables

Table 3-1, 1260-45 Pin Assignments...3-5
Table 3-2, Common 1260-45 Configurations...3-11

This page was left intentionally blank.

Chapter 1

MODULE SPECIFICATION

General

The 1260-45 Signal Matrix Module is a quad 4×16 matrix. It switches two lines per channel, and has the capability of being configured as either four 4×16, two 4×32, or two 8×16 matrices. The configuration is determined at the time of ordering, and is set in the factory. The user connector pinouts have been designed to also allow external configuration by the user, with a minor degradation in high-frequency response. The extent of the degradation is dependent upon the user's cabling, but should be negligible in most applications. The performance specifications given below are for a single 4×16 array

> 1260-45 Module Specifications

Factory Configurations:

$1260-45 A$	Quad 4×16
$1260-45 B$	Dual 4×32
$1260-45 C$	Dual 8×16

Additional 1260-45A Configurations Via External Cabling:
Single $4 \times 64 \quad$ Single $8 \times 32 \quad$ Single 16×16
Dual $4 \times 32 \quad$ Dual 8×16
Dual 4×16 and a Single 4×32
Dual 4×16 and a Single 8×16
Single 4×32 and a Single 8×16
Single 4×16 and a Single 4×48
Single 4×16 and a Single 12×16
Additional 1260-45B Configurations Via External Cabling:
Single $4 \times 64 \quad$ Single 8×32
Additional 1260-45C Configurations Via External Cabling:
Single $8 \times 32 \quad$ Single 16×16
Larger matrices can be configured by interconnecting multiple modules. For more information, see enclosed Application Note SWIOO2.

Maximum Switchable Voltage
(Terminal-Terminal or
Terminal-Chassis) 300 VDC, 300 VAC
Maximum Switchable Power
Per Channel 30W, 62.5 VA (Resistive Load)
Path Resistance
Worst Case $<1.6 \Omega$
End of Life $<2.5 \Omega$
Isolation Hi-Lo $\quad>100 \mathrm{M} \Omega$
Capacitance

Open Channel
Channel-Chassis
Hi-Lo
Minimum Bandwidth 50Ω Termination $\quad 25 \mathrm{MHz}(4 \times 16)$
$25 \mathrm{MHz}(4 \times 32)$
$20 \mathrm{MHz}(4 \times 64)$
$10 \mathrm{MHz}(16 \times 16)$
Insertion Loss, 50Ω Termination $<1 \mathrm{~dB}$ to 100 kHz
$<1.5 \mathrm{~dB}$ to 1 MHz
Crosstalk, 50Ω Termination $<-50 \mathrm{~dB}$ to 100 kHz (4X16)

Cooling

Airflow	4.0 litres $/ \mathrm{sec}$.
Backpressure	$0.5 \mathrm{~mm} \mathrm{H}_{2} \mathrm{O}$

Power (I_{pm})

$$
\begin{aligned}
& +5 \mathrm{~V} \\
& +24 \mathrm{~V}
\end{aligned}
$$

Weight

User Connector
.4A (2.8A Option 01 installed) 0.16A
3.07 lbs. (1.38kg)
3.35 lbs. (1.51kg) w/ Opt 01

64-Pin (2 rows)
IDC Quick Disconnect*

* A crimp connector kit is also available for this module (P/N 407051-001). A strain relief option can be ordered separately for this crimp connector kit, P/N 407207.

Chapter 2

INSTALLATION INSTRUCTIONS

Unpacking and Inspection

1. Remove the 1260-45 module and inspect it for damage. If any damage is apparent, inform the carrier immediately. Retain shipping carton and packing material for the carrier's inspection.
2. Verify that the pieces in the package you received contain the correct 1260-45 module option and the 1260-45 Users Manual. Notify EADS North America Defense Test and Services, Inc. if the module appears damaged in any way. Do not attempt to install a damaged module into a VXI chassis.
3. The 1260-45 module is shipped in an anti-static bag to prevent electrostatic damage to the module. Do not remove the module from the anti-static bag unless it is in a staticcontrolled area.
4. Use the original packing when returning the switching module to EADS North America Defense Test and Services, Inc. for calibration or servicing. The original shipping carton and the instrument's plastic foam will provide the necessary support for safe reshipment.
5. If the original packing material is unavailable, wrap the switching module in an ESD Shielding bag and use plastic spray foam to surround and protect the instrument.
6. Reship in either the original or a new shipping carton.

Installation of the Option 01 into the 1260-45 is described in the Installation section of the 1260 Series VXI Switching Cards Manual.

Module Installation

Installation of the 1260-45 Switching Module into a VXI mainframe, including the setting of DIP switches, is described in the Installation section of the 1260 Series VXI Switching Cards Manual, Publication No. 986673. The ID byte DIP switch, SW1, should be set as follows:

$$
\begin{array}{ll}
1260-45 \mathrm{~A}: & 6=O F F 5=O F F \\
1260-45 \mathrm{~B}: & 6=O F F 5=O N \\
1260-45 \mathrm{C}: & 6=O N 5=O F F
\end{array}
$$

Chapter 3

Module Specific Command Syntax

This section contains the command syntax information that is unique to the 1260-45. A more detailed explanation of the individual commands is contained in the 1260 Series VXI Switching Cards Manual, Publication No. 980673.

The Module Specific Syntax for the 1260-45 is required in the use of the OPEN and CLOSE commands. It will also appear in data output by the 1260 Series Master in response to the PDATAOUT command.

The Module Specific Syntax for the 1260-45 Quad 4×16 Signal Matrix module is as follows:
<mod addr>.<grp no><row no><col no>
where <mod addr> is the switch card address.

NOTE:
The <mod addr> used here is not the VXIbus defined logical address of the $\mathbf{1 2 6 0}$ Series Master. It is peculiar to the 1260 Series and describes the switching module in relation to the $\mathbf{1 2 6 0}$ Master. This address corresponds to the binary value of the switch setting of SW1 on the switching module PCB.
<grp no> is a reference to the matrix containing the relay to be switched. It is a single digit number between 0 and 3 .
<row no> is the matrix row to be connected. It is a single digit number between 0 and 3 .

<col no> is the matrix column to be connected. It is a two digit number between 00 and 15 .
Refer to Figures 3-1, 3-2, and Table 3-1 for group numbers, row numbers, column numbers, and connector pins for this module.

If more than one connection is to be made or broken with contiguous rows or columns, the following format is supported:
<mod addr>.<row no.><col no.>-<row no.><col no.>
Multiple paths and path groups can be specified on a single command line by separating the path designators by commas. Command lines terminate at the end of the line.

EXAMPLE:
OPEN 3.0115,0200-0205,1200-1209,1213,2300,3315
All configurations respond to the same sets of values for <grp no>, <row no>, and <col no>.

PDATAOUT Command

The PDATAOUT command causes the specified module to transmit the CLOSED state of the relays. The syntax used is:

PDATAOUT <mod addr>[;<mod addr>][;<mod addr>]....
The response to the PDATAOUT command is as follows:

```
<header>
<mod addr>. <grp no><row no><col no>[,...]
<grp no><row no><col no>[,...]
<mod addr>.END
```

where <header> is as follows:
1260-45A: <mod addr>. 1260-45A Quad 4x16 SIGNAL MATRIX MODULE

1260-45B: <mod addr>. 1260-45B Dual 4×32 SIGNAL MATRIX MODULE

1260-45C: <mod addr>. 1260-45C Dual 8x16 SIGNAL MATRIX MODULE

Note the actual <header> sent is determined by the setting of the ID Byte DIP switches on the module, and is independent of any external user configuration cables.

PSETUP Command
The PSETUP command causes the specified module to transmit its sequence mode. The supported sequence modes are IMM (Immediate), BBM (Break-Before-Make), and MBB (Make-BeforeBreak). The syntax used is:

PSETUP <mod addr>[;<mod addr>][;<mod addr>]....
The response to the PSETUP command is as follows:
<header>
<mod addr>.<seq mode>
<mod addr>.END
where <seq mode> is IMM, BBM, or MBB, and where <header> is as follows:

1260-45A: <mod addr>. 1260-45A Quad 4x16 SIGNAL MATRIX MODULE

1260-45B: <mod addr>. 1260-45B Dual 4×32 SIGNAL MATRIX MODULE

1260-45C: <mod addr>. 1260-45C Dual 4×32 SIGNAL MATRIX MODULE

Note the actual <header> sent is determined by the setting of the ID Byte DIP switches on the module, and is independent of any external user configuration cables.

The 1260-45 supports most standard 1260 features. These include Confidence Mode, Equate/Exclude/Scan Lists commands, and the STORE/RECALL commands.

Connector Pin Configuration

Refer to Figure 3-1 for pin configurations of the front panel connectors J200 to J203. J200 to J203 is Part Number 602005. The part numbers for the mating connectors and discrete wire connectors are shown below. The actual pinouts are given in Table 3-1 and Figure 3-2.

Mating Connectors

602004	Connector Body
602004-001	Strain Relief
602004-002	Pull Tabs

Crimp (Discrete Wire Connectors)

602159-064	Body
602159-900	Pins

Figure 3-1, 1260-45 User Connector Pin Configuration

Table 3-1, 1260-45 Pin Assignments

Grp	Row	Hi Pin	Lo Pin	Col	Hi Pin	Lo Pin
0	0	J200-A18	J200-B18	0	J202-A32	J202-B32
	1	J200-A22	J200-B22	1	J202-A30	J202-B30
	2	J200-A26	J200-B26	2	J202-A28	J202-B28
	3	J200-A30	J200-B30	3	J202-A26	J202-B26
				4	J202-A24	J202-B24
				5	J202-A22	J202-B22
				6	J202-A20	J202-B20
				7	J202-A18	J202-B18
				8	J202-A16	J202-B16
				9	J202-A14	J202-B14
				10	J202-A12	J202-B12
				11	J202-A10	J202-B10
				12	J202-A8	J202-B8
				13	J202-A6	J202-B6
				14	J202-A4	J202-B4
				15	J202-A2	J202-B2
Grp	Row	Hi Pin	Lo Pin	Col	Hi Pin	Lo Pin
1	0	J200-A20	J200-B20	0	J202-A31	J202-B31
	1	J200-A24	J200-B24	1	J202-A29	J202-B29
	2	J200-A28	J200-B28	2	J202-A27	J202-B27
	3	J200-A32	J200-B32	3	J202-A25	J202-B25
				4	J202-A23	J202-B23
				5	J202-A21	J202-B21
				6	J202-A19	J202-B19
				7	J202-A17	J202-B17
				8	J202-A15	J202-B15
				9	J202-A13	J202-B13
				10	J202-A11	J202-B11
				11	J202-A9	J202-B9
				12	J202-A7	J202-B7
				13	J202-A5	J202-B5
				14	J202-A3	J202-B3
				15	J202-A1	J202-B1

Table 3-1, 1260-45 Pin Assignments (continued)

Grp	Row	Hi Pin	Lo Pin	Col	Hi Pin	Lo Pin
2	0	J201-A18	J201-B18	0	J203-A32	J203-B32
	1	J201-A22	J201-B22	1	J203-A30	J203-B30
	2	J201-A26	J201-B26	2	J203-A28	J203-B28
	3	J201-A30	J201-B30	3	J203-A26	J203-B26
				4	J203-A24	J203-B24
				5	J203-A22	J203-B22
				6	J203-A20	J203-B20
				7	J203-A18	J203-B18
				8	J203-A16	J203-B16
				9	J203-A14	J203-B14
				10	J203-A12	J203-B12
				11	J203-A10	J203-B10
				12	J203-A8	J203-B8
				13	J203-A6	J203-B6
				14	J203-A4	J203-B4
				15	J203-A2	J203-B2
Grp	Row	Hi Pin	Lo Pin	Col	Hi Pin	Lo Pin
3	0	J201-A20	J201-B20	0	J203-A31	J203-B31
	1	J201-A24	J201-B24	1	J203-A29	J203-B29
	2	J201-A28	J201-B28	2	J203-A27	J203-B27
	3	J201-A32	J201-B32	3	J203-A25	J203-B25
				4	J203-A23	J203-B23
				5	J203-A21	J203-B21
				6	J203-A19	J203-B19
				7	J203-A17	J203-B17
				8	J203-A15	J203-B15
				9	J203-A13	J203-B13
				10	J203-A11	J203-B11
				11	J203-A9	J203-B9
				12	J203-A7	J203-B7
				13	J203-A5	J203-B5
				14	J203-A3	J203-B3
				15	J203-A1	J203-B1

Chassis Ground:
J200

J201
A1-A4, A19, A21, A23, A25, A27, A29, A31
B1-B4, B19, B21, B23, B25, B27, B29, B31
A1-A4, A19, A21, A23, A25, A27, A29, A31
B1-B4, B19, B21, B23, B25, B27, B29, B31

Figure 3-2a, 1260-45 Matrix Pinouts

Figure 3-2b, 1260-45 Matrix Pinouts

Expansion and Configuration

Internally, the 1260-45 consists of two PCBAs with identical, dual 4×16 matrices. Each PCB assembly can be configured, via internal push-on jumpers, to connect the Rows and Columns of the two matrices. If Row 0 of the first matrix is connected to Row 0 of the second matrix, Row 1 of the first is connected to Row 1 of the second, etc., the PCB assembly becomes a 4×32 matrix. The difference between the $1260-45 \mathrm{~A}$ and the $1260-45 \mathrm{~B}$ is the 45B module is shipped with these jumpers installed on both PCB assemblies at the factory. Similarly, if Column 0 of the first matrix is connected to Column 0 of the second matrix, etc., the PCB assembly becomes an 8×16 matrix. The $1260-45 \mathrm{C}$ has the columns of the two PCB assemblies connected in this fashion when shipped from the factory. (Refer to Figure 3-2. The jumpers are designated J 7 and J 8 for the columns, and J9 and J10 for the rows).

The 1260-45 module can also be configured externally. The P/N 407058, shown in Figure 3-3, is included in the ship kit of each module for this purpose. Connector 3 is the regular user interface. The mate to this connector can be a discrete wire connector or a ribbon cable, depending upon user preferences. Connectors 1 and 2 are connected in parallel across the ribbon cable. When these are inserted into J200 and J201, the result is a dual 4×32 array.

Unlike the 1260-45B configuration, the interconnected matrices are on different PCBAs inside the module. This ribbon cable can then be extended to adjacent 1260-45 modules in the VXI mainframe to yield dual 4×64, dual 4×96, etc. matrices. The dual arrays can be connected together using either the internal jumpers in a 1260-45B module, jumpers in the user cabling, or a "configuration" connector across the ribbon cable. The mate to the configuration connector should be a discrete wire, loopback connector; i.e., it connects Group 0 Row 0 to Group 2 Row 0, Group 1 Row 1 to Group 1 Row 2, etc. This loopback "configuration" connector would allow a single 1260-45A to become a 4×64 matrix.

Columns can be connected in the same fashion to yield a single 16×16 matrix per module. Table $3-2$ shows some common configurations. Refer to Application Note SWIOO2 for more information on the 1260-45 configurations.

Table 3-2, Common 1260-45 Configurations

Configuration	Start With	Cabling Used
4×64	$1260-45 B$	Rows with Loopback
8×32	$1260-45 B$	Columns with Loopback
16×16	4×642 modules	Columns with Loopback Between Modules (LBBM)
8×64	8×322 modules	Columns with Loopback Between Modules (LBBM)
16×32		

Figure 3-3, Sample Expansion/Configuration Cable

This page was left intentionally blank.

Chapter 4 OPERATION

The 1260-45 consists of two PCBAs. The larger PCBA, 405043, contains the VXI LBus interface, as well as half of the relay matrix and all of the relay drive electronics. The smaller PCBA, 405044, contains the other half of the relay matrix. The boards are connected by a ribbon cable which connects the relay coils to the drive electronics. The relay signal lines are not passed between the two PCB assemblies inside the module. The VXI interface is described in the Theory of Operation section of the 1260 Series VXI Switching Cards Manual.

There is no connection between the relay and coil signal lines. They both are arranged into two 4×16 matrices on each board. There are two coils and the associated circuitry for each relay; one to set the relay, and one to reset it. The latching-type relays' coils are only energized when their state is to be changed.

Several features have been incorporated into the card to reduce the time necessary to update the state of the relays on the card. First, relay coils have been grouped into sets of 16 . This reduces the amount of backplane overhead associated with communicating an update from the -01 CPU to the individual switch module. Second, the software in the -01 keeps track of the state of the relays. Commands are only sent to the card for the relays that change, rather than for the entire array. This minimizes the volume of data that must be sent to the card via the serial, local bus interface.

All of the rows have non-latching relays in series with the signal line inputs. This causes the row lines to be opened upon power fail. Upon power up, these relays remain open until after the -01 CPU has reset each relay. When the power-up sequence is completed, these "guard" relays are closed and the card functions normally. The guard relays are transparent, and are not accessible, to the user.

Relay Drive Circuitry

The quantity of drivers is reduced, and the MTBF improved by arranging the relay coils into matrices. As shown in Figure 4-1, one end of each relay is connected to a source driver, and the other end is connected to a sink driver. The relay is not actuated unless the relay coil's source and sink drivers are both turned on.

The diodes in series with the relay coils have two functions. The first function is to protect the driver ICs by clamping the flyback voltages. The second function is to block "trap door" paths through the array which might cause non-specified relays to actuate.

Circuitry is also included to test for hardware faults in the coil/diode circuitry. Both opens and shorts can be detected. The basic technique is to measure the voltage applied to the sink driver when the source driver is ON or OFF. Referring to Figure 4-1, assume the relay coil on K1 between pins 1 and 5 is actuated. This means all drivers are OFF except for U1 Pin 18 and U2 Pin 18. Under normal conditions, this will cause the voltage on U3A Pin 4 to be below the reference threshold. At the same time, the voltage on U3B Pin 6 will be higher than the reference threshold because its sink driver is OFF, eliminating the IR voltage drop across Pin 1 and 5 of K2. If either that coil or CR3 are open, there will be no pull-up voltage, and the voltage on U3B Pin 6 will be lower than the reference threshold causing the software to detect a fault. If the coil between Pins 1 and 5 of K1 is shorted, the voltage on U3A Pin 4 will be above the threshold which will also be detected as a fault. If CR4 is shorted, the voltage on U3B Pin 6 will basically be the result of the voltage divider formed by K2 Pins 1-5, K2 Pins 10-6, and K1 Pins 10-6. The threshold voltage has been chosen so this resulting voltage is below it. A fault condition will then be detected.

Figure 4-1, Relay Drive Circuitry

This page was left intentionally blank.

Chapter 5

OPTIONAL HARNESS ASSEMBLIES

The following harness assemblies are used to connect 1260-45 to Freedom Series Test Receiver Interfaces.

Each harness documentation consists of an assembly drawing, parts list, system wire list and wire list.

407286 Virginia Panel, Inc. Series VP90 Interface Harness

407287 TTI Testron, Inc. Interface Harness (TTI Receiver must be above chassis)

For more information on Racal Instruments complete line of Test Receiver Interface solutions, contact your Sales Representative.

This page was left intentionally blank.

RACAL INSTRUMENTS INC.

Assembly 407286
HARNESS ASSY, 1260-45, VP90 Date 3/03/99 Revision C

$\#$	Component	Description	U/M	Qty Reqd	Ref
1	405085	PCB ASSY, VP90 INTFC, 96CONTCT	EA	2.00000	J100, J101
2	407259	CABLE ASSY, IDC, 64COND, VP90	EA	2.00000	J202, J203
3	407356	CABLE ASSY, IDC, 32COND, VP90	EA	2.00000	J200, J201
4	910541	POLYURETHANE CONFORMAL COAT	EA	.00001	
5	GRP-I10-1/2	TBGWOV-POY. 250ID-BLACK	FT	.00001	
6	M23053/5-109-4	TBGSRK-POF. 750ID-YELLOW	FT	.00001	
7	500104	TBGSRK-POF. 750ID-CLEAR	FT	.00001	
8	500017	TBGSRK-POF. 500ID-BLACK	FT	.00001	
9	500005	TIE CORD NYLON	FT	.00001	

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

WIRE	FROM	TO	TYPE	PART \#	WIRE LEN	REFERENCE
$\begin{aligned} & 47 \\ & 48 \end{aligned}$	$\begin{aligned} & 3101-74 \\ & 1101-11 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2201-A31 } \\ & \text { J201-A32 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RIID } \\ & \text { BRN } \\ & \hline \end{aligned}$	$\begin{aligned} & 407356 \\ & 407356 \\ & \hline \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \\ & \hline \end{aligned}$	ROW 15 AH RTN ROW 15 AH
$\begin{aligned} & 49 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{J} 101-33 \\ & \mathrm{~J} 101-65 \end{aligned}$	$\begin{aligned} & \mathrm{J} 201-\mathrm{B} 17 \\ & \mathrm{~J} 201-\mathrm{B} 18 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TAN } \\ & \text { TAN } \end{aligned}$	$\begin{array}{r} 407356 \\ 407356 \\ \hline \end{array}$	$\begin{array}{r} 41.5^{\prime \prime} \\ 41.5^{\prime \prime} \\ \hline \end{array}$	ROW 08 BL RTN ROW 08 BL
51	$\begin{aligned} & \mathrm{JIOLI}-2 \\ & \mathrm{~J} 101-35 \end{aligned}$	$\begin{aligned} & \mathrm{J} 20 \mathrm{l}-\mathrm{B} 19 \\ & \mathrm{~J} 20 \mathrm{I}-\mathrm{B} 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TAN } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407356 \\ & 407356 \\ & \hline \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	ROW 12 BL RTN ROW 12 BL
$\begin{aligned} & \frac{22}{53} \\ & 54 \end{aligned}$	$\begin{aligned} & \mathrm{J} 101-67 \\ & \mathrm{~J} 101-4 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} 201-\mathrm{B} 21 \\ & \mathrm{~J} 201-\mathrm{B} 22 \end{aligned}$	$\begin{aligned} & \text { TAN } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407356 \\ & 407356 \\ & \hline \end{aligned}$	$\begin{aligned} & 41.5^{\prime} \\ & 41.5 \\ & \hline \end{aligned}$	ROW 09 BL RTN ROW 09 BL
$\begin{aligned} & 55 \\ & 56 \end{aligned}$	$\begin{aligned} & 5101-37 \\ & 5101-69 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} 201-\mathrm{B} 23 \\ & \mathrm{~J} 201-\mathrm{B} 24 \end{aligned}$	$\begin{aligned} & \text { TAN } \\ & \text { TAN } \end{aligned}$	$\begin{array}{r} 407356 \\ 407356 \\ \hline \end{array}$	$\begin{array}{r} 41.5^{\prime \prime} \\ 41.5^{\prime \prime} \\ \hline \end{array}$	ROW 13 BL RTN ROW 13 BL
57	$\begin{aligned} & \mathrm{J} 101-6 \\ & \mathrm{~J} 101-39 \end{aligned}$	$\begin{aligned} & 3201-\mathrm{B} 25 \\ & \mathrm{~J} 201-\mathrm{B} 26 \end{aligned}$	$\begin{aligned} & \text { TAN } \\ & \text { TAN } \\ & \hline \end{aligned}$	$\begin{array}{r} 407356 \\ 407356 \\ \hline \end{array}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	ROW 10 BL RTN ROW 10 BL \qquad
$\begin{array}{r} 59 \\ 60 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{J} 101-71 \\ & \mathrm{j} 101-8 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { J201-B27 } \\ & \text { J201-B28 } \end{aligned}$	$\begin{aligned} & \text { TAN } \\ & \text { TAN } \\ & \hline \end{aligned}$	$\begin{aligned} & 407356 \\ & 407356 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	ROW 14 BL RTN ROW 14 BL
$\begin{aligned} & 61 \\ & 62 \\ & \hline \end{aligned}$	$\begin{aligned} & 3101-41 \\ & 3101-73 \end{aligned}$	$\begin{aligned} & \text { J201-B29 } \\ & \text { J201-B30 } \end{aligned}$	$\begin{aligned} & \text { TiN } \\ & \text { TiN } \end{aligned}$	$\begin{aligned} & 407356 \\ & 407356 \\ & \hline \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	ROW 11 BI. RTN ROW 11 BL
$\begin{aligned} & 63 \\ & 64 \end{aligned}$	$\begin{array}{r} \mathrm{J} 101-10 \\ \mathrm{~J} 101-43 \\ \hline \end{array}$	$\begin{aligned} & \text { J201-B31 } \\ & \text { J201-B32 } \end{aligned}$	$\begin{aligned} & \text { TAN } \\ & \text { TAN } \\ & \hline \end{aligned}$	$\begin{array}{r} 407356 \\ 407356 \\ \hline \end{array}$	$\begin{array}{r} 41.5^{\prime \prime} \\ 41.5^{\circ} \\ \hline \end{array}$	ROW 15 BL RTN ROW 15BL
$\begin{aligned} & 65 \\ & 66 \end{aligned}$	$\begin{array}{r} \mathrm{J} 100-44 \\ \mathrm{~J} 100-76 \end{array}$	$\begin{aligned} & \mathrm{J} 202-\mathrm{A} 1 \\ & \mathrm{~J} 202-\mathrm{A} 2 \end{aligned}$	$\begin{aligned} & \text { R1:I) } \\ & \text { BRN } \\ & \hline \end{aligned}$	$\begin{aligned} & 407259 \\ & 407259 \\ & \hline \end{aligned}$	$\begin{array}{r} 41.5^{\prime \prime} \\ -41.5^{\prime \prime} \\ \hline \end{array}$	$\begin{aligned} & \text { COL } 31 \mathrm{~A} \\ & \text { COL } 15 \mathrm{~A} \end{aligned}$
$\begin{aligned} & 67 \\ & 68 \end{aligned}$	$\begin{aligned} & \mathrm{J} 100-13 \\ & \mathrm{~J} 100-46 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} 202-\mathrm{A} 3 \\ & \mathrm{~J} 202-\mathrm{A} 4 \end{aligned}$	$\begin{aligned} & \text { BLK } \\ & \text { WHT } \end{aligned}$	$\begin{array}{r} 407259 \\ 407259 \\ \hline \end{array}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5 \end{aligned}$	$\begin{aligned} & \text { COL } 30 \mathrm{~A} \\ & \text { COL } 14 \mathrm{~A} \\ & \hline \end{aligned}$
$\begin{aligned} & \hline 69 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} 100-78 \\ & \mathrm{~J} 100-15 \end{aligned}$	$\begin{aligned} & \mathrm{J} 202-\mathrm{A} 5 \\ & \mathrm{~J} 202-\mathrm{A6} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { GRY } \\ & \text { VIO } \\ & \hline \end{aligned}$	$\begin{array}{r} 407259 \\ 407259 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 41.5^{\prime \prime} \\ -41.5^{\prime \prime} \\ \hline \end{array}$	$\begin{aligned} & \text { COL } 29 \mathrm{~A} \\ & \text { COL } 13 \mathrm{~A} \\ & \hline \end{aligned}$
$\begin{aligned} & 71 \\ & 72 \end{aligned}$	$\begin{aligned} & -\mathrm{J} 100-48 \\ & \mathrm{~J} 100-80 \end{aligned}$	$\begin{aligned} & \mathrm{J} 202-\mathrm{A} 7 \\ & \mathrm{~J} 202-\mathrm{A} 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 131 . U \\ & \text { GR.V } \end{aligned}$	$\begin{array}{r} 407259 \\ 407259 \\ \hline \end{array}$	$\begin{array}{r} 41.5^{\prime \prime} \\ 41.5^{\prime \prime} \end{array}$	$\begin{array}{r} \operatorname{COL} 28 \mathrm{~A} \\ \operatorname{COL} 12 \mathrm{~A} \\ \hline \end{array}$
73 74	$\begin{aligned} & \mathrm{J} 100-17 \\ & \mathrm{~J} 100-50 \end{aligned}$	$\begin{aligned} & \text { J202-A9 } \\ & \text { J202-A10 } \end{aligned}$	$\begin{aligned} & \text { YBI, } \\ & \text { ORN } \end{aligned}$	$\begin{aligned} & 407259 \\ & 407259 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { COL } 27 \mathrm{~A} \\ & \text { COL } 11 \mathrm{~A} \\ & \hline \end{aligned}$
75 76	$\begin{aligned} & \mathrm{J} 100-82 \\ & \mathrm{~J} 100-19 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} 202-\mathrm{A} 11 \\ & \mathrm{~J} 202-\mathrm{A} 12 \end{aligned}$	$\begin{aligned} & \text { RED } \\ & \text { BRN } \end{aligned}$	$\begin{array}{r} 407259 \\ 407259 \\ \hline \end{array}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { COL } 26 \mathrm{~A} \\ & \text { COL } 10 \mathrm{~A} \\ & \hline \end{aligned}$
77 78	J100-52 J100-84	$\begin{aligned} & \mathrm{J} 202 \text {-A13 } \\ & \mathrm{J} 202-\mathrm{Al4} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BLK } \\ & \text { WHT } \end{aligned}$	$\begin{array}{r} 407259 \\ 407259 \\ \hline \end{array}$	$\begin{aligned} & \hline 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \mathrm{COL} 25 \mathrm{~A} \\ & \mathrm{COL} 09 \mathrm{~A} \\ & \hline \end{aligned}$
79 70 80	$\begin{aligned} & \mathrm{J} 100-21 \\ & \mathrm{~J} 100-54 \end{aligned}$	$\begin{array}{r} \text { J202-A15 } \\ \text { J202-A16 } \\ \hline \end{array}$	$\begin{aligned} & \text { GRY } \\ & \text { VIO } \\ & \hline \end{aligned}$	$\begin{array}{r} 407259 \\ 407259 \\ \hline \end{array}$	$\begin{array}{r} 41.5^{\prime \prime} \\ 41.5^{\prime \prime} \\ \hline \end{array}$	$\begin{aligned} & \text { COL } 24 \mathrm{~A} \\ & \text { COL } 08 \mathrm{~A} \\ & \hline \end{aligned}$
81 82	$\begin{aligned} & \mathrm{J} 100-86 \\ & \mathrm{~J} 100-23 \end{aligned}$	$\begin{array}{r} \mathrm{J} 202-\mathrm{A} 17 \\ \mathrm{~J} 202-\mathrm{A} 18 \\ \hline \end{array}$	$\begin{aligned} & \text { BLU } \\ & \text { GRN } \end{aligned}$	$\begin{aligned} & 407259 \\ & 407259 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{COL} 23 \mathrm{~A} \\ & \mathrm{COL} 07 \mathrm{~A} \\ & \hline \end{aligned}$
83 84	$\begin{aligned} & \mathrm{J} 100-56 \\ & \mathrm{~J} 100-88 \end{aligned}$	$\begin{aligned} & \mathrm{J} 202-\mathrm{A} 19 \\ & \mathrm{~J} 202-\mathrm{A} 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { YEL } \\ & \text { ORN } \end{aligned}$	$\begin{array}{r} 407259 \\ 407259 \\ \hline \end{array}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { COL } 22 \mathrm{~A} \\ & \text { COL } 06 \mathrm{~A} \\ & \hline \end{aligned}$
85 86	$\begin{aligned} & \mathrm{J} 100-25 \\ & \mathrm{~J} 100-58 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} 202-\mathrm{A} 21 \\ & \mathrm{~J} 202-\mathrm{A} 22 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RED } \\ & \text { BRN } \end{aligned}$	$\begin{aligned} & 407259 \\ & 407259 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { COL } 21 \mathrm{~A} \\ & \text { COL } 05 \mathrm{~A} \\ & \hline \end{aligned}$
$\begin{aligned} & 87 \\ & 88 \end{aligned}$	$\begin{aligned} & \mathrm{J} 100-90 \\ & \mathrm{~J} 100-27 \end{aligned}$	$\begin{aligned} & \text { J202-A } 23 \\ & \text { J202-A24 } \end{aligned}$	BLK WHT	$\begin{array}{r} 407259 \\ 407259 \\ \hline \end{array}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { COL } 20 \mathrm{~A} \\ \text { COL } 04 \mathrm{~A} \\ \hline \end{array}$
$\begin{array}{r} 89 \\ 90 \\ \hline \end{array}$	$\begin{aligned} & 3100-60 \\ & \mathrm{~J} 100-92 \end{aligned}$	$\begin{aligned} & \mathrm{J} 202-\mathrm{A} 25 \\ & \mathrm{~J} 202-\mathrm{A} 26 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { GRY } \\ & \text { VIO } \\ & \hline \end{aligned}$	$\begin{array}{r} 407259 \\ 407259 \\ \hline \end{array}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { COL 19A } \\ & \text { COL } 03 \mathrm{~A} \\ & \hline \end{aligned}$
$\begin{aligned} & 91 \\ & 92 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} 100-29 \\ & \mathrm{~J} 100-62 \end{aligned}$	$\begin{aligned} & \text { J202-A27 } \\ & \text { J202-A28 } \end{aligned}$	$\begin{aligned} & \mathrm{BLU} \\ & \mathrm{GRN} \end{aligned}$	$\begin{array}{r} 407259 \\ 407259 \\ \hline \end{array}$	$\begin{aligned} & \hline 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { COL } 18 \mathrm{~A} \\ & \mathrm{COL} 02 \mathrm{~A} \\ & \hline \end{aligned}$
RACAL Instruments, Inc., 4 Goodyear St., Irvine, CA 92718 , - - -						
DOCUMENT TIT			$\frac{\operatorname{SinE}}{\mathrm{A}}$	$\frac{\text { CODE NO. }}{2} \frac{1793}{}$	DOCUMENT NO.	$\begin{array}{l\|c} \hline \text { MENT NO. } & \text { REV } \\ \hline 7286 & \text { C } \\ \hline \end{array}$
HARNESS ASSEMBLY, 1260-45, VP90			1,RN		SHEET 4 of 7	

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

RACAL Instruments, Inc., 4 Goodyear St., Irvine, CA 92718

DOCUMENT TITLE	SIZE	CODE NO.	DOCUMENT NO.	REV
HARNESS ASSEMBLY, $1260-45, \mathrm{VP9} 0$	A	21793	407286	C
	DRN		- ${ }^{\text {SHEET } 6 \text { of } 7}$	

ENGINEERING WIRE LIST

ENGINEERING PARTS LIST

ENGINEERING WIRE LIST

WIRE	FROM	TO	TYPE	PART \#	WIRE LEN		
	BLK AAx RW 0I (JIOO)	$\begin{aligned} & \text { Uxx-SLOT yy } \\ & \text { (J200) } \end{aligned}$	CABLE	407287		SYSTEM	
	BLK AAx RW 02 (J101)	$\begin{aligned} & \text { Uxx-SLOT yy } \\ & (\mathrm{J} 200) \end{aligned}$	CABLE	407287			
	BLK AAx RW03 (J102)	$\begin{aligned} & \text { Uxx-SLOT yy } \\ & \text { (J201) } \end{aligned}$	CABLE	407287			
	BLK AAx RW 04 (J103)	$\begin{aligned} & \text { Uxx-SLOT yy } \\ & \text { (J201) } \end{aligned}$	CABLE	407287			
	BLK AAx RW 05 (J104)	$\begin{aligned} & \text { Uxx-SLOT yy } \\ & (5202) \end{aligned}$	CABLE	407287			
	BLK AAx RW 06 (J105)	$\begin{aligned} & \text { Uxx-SLOT yy } \\ & \text { (J202) } \end{aligned}$	CABLE	407287			
	$\begin{aligned} & \text { BLK AAx RW } 07 \\ & \text { (J106) } \end{aligned}$	$\begin{aligned} & \text { Uxx-SLOT yy } \\ & \text { (J202) } \end{aligned}$	CABLE	407287			
	BLK AAx RW 08 (5107)	$\begin{aligned} & \text { Uxx-SLOT yy } \\ & \text { (J202) } \end{aligned}$	CABLE	407287			
	BILK AAx RW 09 (J108)	$\begin{aligned} & \text { Uxx-SLOT yy } \\ & (\mathrm{J} 202) \\ & \hline \end{aligned}$	CABLE	407287			
	BLK AAx RW 10 (J109)	$\begin{aligned} & \text { Uxx-SLOT yy } \\ & (1202) \end{aligned}$	CABLE	407287			
	$\begin{aligned} & \text { BLK AAx RW I } \\ & (\mathrm{J} 110) \end{aligned}$	$\begin{aligned} & \text { Uxx-SLOT yy } \\ & \text { (J202) } \end{aligned}$	CABLE	407287			
	$\begin{aligned} & \text { BLK AAx RW } 12 \\ & (\mathrm{~J} 111) \end{aligned}$	$\begin{aligned} & \text { Uxx-SLOT yy } \\ & (\text { (203) } \end{aligned}$	CABLE	407287			
	BLK AAx RW 13 (J112)	$\begin{aligned} & \text { Uxx-SLOT yy } \\ & (1203) \end{aligned}$	CABLE	407287			
	$\text { BLK AAx RW } 14$ (J113)	$\begin{aligned} & \text { Uxx-SLOT yy } \\ & \text { (J203) } \end{aligned}$	CABLE	407287			
	BLK AAx RW 15 (Ji14)	$\begin{aligned} & \text { Uxx-SLOT yy } \\ & (1203) \end{aligned}$	CABLE	407287			
	$\begin{aligned} & \text { BLK AAx RW } 16 \\ & \text { (J115) } \end{aligned}$	$\begin{aligned} & \text { Uxx-SLOT yy } \\ & \text { (J203) } \end{aligned}$	CABLE	407287			
	BLK AAx RW 17 (1116)	$\begin{aligned} & \text { Uxx-SLOT yy } \\ & (\mathrm{J} 203) \end{aligned}$	CABLE	407287			
	BLK AAx RW 18 (J117)	$\begin{aligned} & \text { Uxx-SLOT yy } \\ & \text { (J203) } \end{aligned}$	CABLE	407287			
	This this does asse	ystem wirelis arness assem not in any wa bly.	ves as a into the ect the fab	mplate for rall system ration of	orpor irelist. harne		
RACAL Instruments, Inc., 4 Goodyear St., Irvine, CA 92718							
	DOCUMEN	TITLE	SIZE	CODE NO.	DOC	MENT NO.	REV
HARNESS ASSY, 1260-45, TTI			A	21793	407287		A
			DRN		SHEET 3 of 8		

ENGINEERING WIRE LIST

WIRE	FROM	TO	TYPE	PART \#	WIRE LEN	REFERENCE	
1	J101-6	J200-A18	GRN	407357	41.5"	ROW 00 AH	
2	J101-8	J200-A20	ORN	407357	41.5"	ROW 04 AH	
3	J101-10	J200-A22	BRN	407357	41.5"	ROW 01 AH	
4	J100-9	J200-A24	WHT	407357	41.5"	ROW 05 AH	
5	J100-7	J200-A26	VIO	407357	41.5"	ROW 02 AH	
6	J100-5	J200-A28	GRN	407357	41.5"	ROW 06 AH	
7	J100-3	J200-A30	ORN	407357	41.5"	ROW 03 A	
8	J100-I	J200-A32	BRN	407357	41.5"	ROW 07 AH	
9	1101-5	5200-B18	TAN	407357	41.5"	ROW 00 BL ROW 04 BL	
10	1101-7	1200-820	TAN	407357	41.5"		
11	J101-9	J200-822	TAN	407357	41.5"		
12	J100-10	J200-B24	TAN	407357	41.5"	ROW 05 BL	
13	J100-8	J200-B26	TAN	407357	41.5"	ROW 02 BL ROW 06 BI.	
14	J100-6	J200-B28	TAN	407357	41.5"		
15	J100-4	J200-B30	TAN	407357	41.5"	ROW 03 BL	
16	1100-2	J200-B32	TAN	407357	41.5"	ROW 07 BI.	
17	J103-6	J201-A18	GRN	407357	41.5"	ROW 08 AH	
18	J103-8	J201-A20	ORN	407357	41.5"	ROW 12 AH	
19	J103-10	J201-A22	BRN	407357	41.5"	ROW 09 AH	
20	J102-9	J201-A24	WHT	407357	41.5"	ROW 13 AH	
21	1102-7	J201-A26	VIO	407357	41.5"	ROW 10 AH	
22	J102-5	J201-A28	GRN	407357	41.5*	ROW 14 AH	
23	J102-3	J201-A30	ORN	407357	41.5"	ROW 11 AH ROW 15 AH	
24	J102-1	J201-A32	BRN	407357	41.5"		
25	J103-5	J201-B18	TAN	407357	41.5 "	ROW 08 BL ROW 12 BL	
26	J103-7	J201-B20	TAN	407357	41.5"		
27	J103-9	J201-B22	TAN	407357	41.5"	ROW 09 BL Row 13 BL	
28	J102-10	J201-B24	TAN	407357	41.5"		
29	J102-8	J201-B26	TAN	407357	41.5"	ROW 10 BL	
30	J102-6	J201-B28	TAN	407357	41.5"	ROW 14 BL	
31	J102-4	5201-B30	TAN	407357	41.5"	ROW 11 BL ROW 15 BL	
32	1102-2	J201-B32	TAN	407357	41.5"		
33	J110-3	J202-Al	RED	407260	41.5"	COL 31 A	
34	1110-1	J202-A2	BRN	407260	41.5"	COL 15 A	
35	J109-2	J202-A3	BLK	407260	41.5"	COL 30 A	
36	J109-4	J202-A4	WHT	407260	41.5"	COL 14 A	
37	J109-6	J202-A5	GRY	407260	41.5"	COL 29 A	
38	J109-8	J202-A6	VIO	407260	41.5"	COL 13 A	
39	J109-10	J202-A7	$\begin{aligned} & \text { BLU } \\ & \text { GRN } \end{aligned}$	407260	41.5"	COL 28 A	
40	J108-9	J202-A8		407260	41.5"		
4	J108-7	J202-A9	YEL	407260	41.5"	$\begin{aligned} & \mathrm{COL} 27 \mathrm{~A} \\ & \mathrm{COL} 11 \mathrm{~A} \\ & \hline \end{aligned}$	
42	J108-5	J202-A10		407260	41.5"		
RACAL Instruments, Inc., 4 Goodyear St., Irvine, CA 92718							
DOCUMENT TITLE			SIZE	CODE NO.	DOCUMENT NO.		REV
HARNESS ASSEMBLY, 1260-45, TTI			A	21793	407287		A
			DRN			SHEET 4 of 8	

ENGINEERING WIRE LIST

WIRE	FROM	TO	TYPE	PART \#	WIRE LEN		
43	J108-3	J202-A11	RED	407260	41.5"	COL 26 A	
44	1108-1	J202-A12	BRN	$407260)$	41.5"	COL. 10 A	
45	J107-2	J202-A13	BLK	407260	41.5 "	COL 25 A	
46	J107-4	J202-A14	WHT	407260	41.5 ${ }^{\prime \prime}$	COL 09 A	
47	J107-6	J202-A15	GRY	407260	41.5 "	COL 24 A	
48	J107-8	J202-A16	VIO	407260	41.5"	COL 08 A	
49	J107-10	5202-A17	BLU	407260	41.5"	COL 23 A	
50	J106.9	J202-A18	GRN	407260	41.5"	COL. 07 A	
5	J106-7	J202-A19	YEL	40726)	41.5"	COL 22 A	
52	J106-5	J202-A20	ORN	407260	41.5"	COLO6 A	
53	ग106-3	J202-A21	RED	407260	41.5"	COL 21 A	
54	1106-1	J202-A22	BRN	407260	41.5"	COL 05 A	
55	J105-2	J202-A23	BLK	407260	41.5"	COL 20 A	
56	J105-4	J202-A24	WHT	407260	41.5"	COL 04 A	
57	J105-6	J202-A25	GRY	407260	41.5"	COL 19 A	
58	J105-8	J202-A26	VIO	407260	41.5"	COL 03 A	
59	J105-10	J202-A27	BLU	407260	41.5"	COL 18 A	
60	J104-9	J202-A28	GRN	407260	41.5"	COL 02 A	
61	J104-7	J202-A29	YEL	407260	41.5"	COL. 17 A	
62	J104-5	J202-A30	ORN	407260	41.5"	COL 01A	
63	1104-3	J202-A31	RED	407260	41.5"	COL 16 A	
64	J104.1	J202-A32	BRN	407260	41.5"	COL 00 A	
65	J110-4	J202-B1	TAN	407260	$41.5{ }^{\text {n }}$	COL 31 B	
66	J110-2	J202-B2	TAN	407260	41.5"	COL 15 B	
67	J109-1	J202-B3	TAN	407260	41.5"	COL 30 B	
68	J109-3	J202-B4	TAN	407260	41.5"	COL 14 B	
69	J109-5	J202-B5	TAN	407260	41.5"	COL 29 B	
70	J109-7	J202-B6	TAN	407260	41.5"	COL 13 B	
71	J109-9	J202-B7	TAN	407260	41.5"	COL 28 B	
72	J108-10	J202-B8	TAN	407260	41.5"	COL 12 B	
73	J108-8	J202-B9	TAN	407260	41.5"	COL 27 B	
74	J108-6	J202-B10	TAN	407260	41.5"	COL 11 B	
75	J108-4	J202-Bil	TAN	407260	41.5"	COL 26 B	
76	1108-2	J202-B12	TAN	407260	41.5"	COL 10 B	
77	J107-1	J202-B13	TAN	407260	41.5"	COL 25 B	
78	1107-3	J202-B14	TAN	407260	41.5"	COL 09 B	
79	J107-5	J202-B15	TAN	407260	41.5"	COL 24 B	
80	J107-7	J202-B16	TAN	407260	41.5"	COL08B	
81	J107-9	J202-B17	TAN	407260	41.5"	COL 23 B	
82	J106-10	J202-B18	TAN	407260	41.5"	COL 07 B	
83	J106-8	J202-B19	TAN	407260	41.5 "	COL 22 B	
84	J106-6	J202-B20	TAN	407260	41.5"	COL 06 B	
85	J106-4	J202-B21	TAN	407260	41.5"	COL 21 B	
86	J106-2	J202-B22	TAN	407260	41.5"	COL 05 B	
87	J105-1	J202-B23	TAN	407260	41.5"	COL 20 B	
88	J105-3	J202-B24	TAN	407260	41.5"	COL 04 B	
89	J105-5	J202-B25	TAN	407260	41.5"	COL 19 B	
90	J105-7	J202-B26	TAN	407260	41.5"	COL 03 B	
RACAL Instruments, Inc., 4 Goodyear St., Irvine, CA 92718							
DOCUMENT TITLE.			SIZE	CODE NO.	D)	ENT NO.	REV
			A	21793	407287		A
HARNESS ASSEMBLY, 1260-45, TTI			DRN			SHEET 5 of 8	

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

Chapter 6 PRODUCT SUPPORT

Product Support

Warranty

EADS North America Defense Test and Services, Inc. has a complete Service and Parts Department. If you need technical assistance or should it be necessary to return your product for repair or calibration, call 1-800-722-3262. If parts are required to repair the product at your facility, call 1-949-859-8999 and ask for the Parts Department.

When sending your instrument in for repair, complete the form in the back of this manual.

For worldwide support and the office closest to your facility, refer to the website for the most complete information http://www.eadsnadefense.com.

Use the original packing material when returning the 1260-45 to EADS North America Defense Test and Services, Inc. for calibration or servicing. The original shipping container and associated packaging material will provide the necessary protection for safe reshipment.

If the original packing material is unavailable, contact EADS North America Defense Test and Services, Inc. Customer Service at 1-800-722-3262 for information.

REPAIR AND CALIBRATION REQUEST FORM

To allow us to better understand your repair requests, we suggest you use the following outline when calling and include a copy with your instrument to be sent to the EADS North America Defense Test and Service, Inc. Repair Facility.

Model	Serial No.__D	Date
Company Name___ Purchase Order \#		
Billing Address		
		City
State/Province	Zip/Postal Code	Country
Shipping Address		
		City
State/Province	Zip/Postal Code	Country
Technical Contact	Phone Number ()	
Purchasing Contact	Phone Number ()	
1. Describe, in detail, the problem and symptoms you are having. Please include all set up details, such as input/output levels, frequencies, waveform details, etc.		

2. If problem is occurring when unit is in remote, please list the program strings used and the controller type.
3. Please give any additional information you feel would be beneficial in facilitating a faster repair time (i.e., modifications, etc.)
\qquad
\qquad
\qquad
4. Is calibration data required? Yes No (please circle one)

Call before shipping Ship instruments to nearest support office.
Note: We do not accept "collect" shipments.

Appendix A

HOW TO CONFIGURE THE 1260-45 MATRIX MODULE

Introduction

Configuration

The $1260-45$ is a high-density matrix module containing four 4×16 matrices. Larger matrices may be configured via internal jumpers or by using external cabling. This application note will detail how to achieve this interconnection and give a practical example. Figure A-1 shows that J200 and J201 contain the rows of the matrices and J202 and J203 contain the columns of the matrices.

The 1260-45 module is constructed from two printed circuit boards mounted one on top of the other. (See Figures A-1 and A-2 for a block diagram of the module.) Modules may be purchased from the factory with internal jumpers installed. Following are the three basic configurations:

* 1260-45A Quad 4×16 matrices (no jumpers) (See Figure A-4)
* 1260-45B Dual 4×32 matrices (rows
jumpered), J9, J10 (See Figure A-5)
1260-45C Dual 8xi6 matrices (columns jumpered), J7 J8 (See Figure A-6)

The flexibility of this module allows the user to reconfigure these on-board jumpers. Additional flexibility is achieved because of the pin-out of the front panel connectors. The matrices may also be interconnected across boards via external cabling. A simple ribbon cable across J 200 and J 2 Ol connects the rows of group 02, 1-3 in parallel.

Larger Matrices

Example

Summary

To build a 4×64 matrix, start with the dual 4×32 module (126045B). This is used because the 1260-45B already has the rows paralleled, eliminating the time it would take the user to do this by removing module covers on a 1260-45A. The 1260-45C has the columns paralleled, which is not required here. Connect a ribbon cable between J200 and J20 I to parallel group 0 to 2 and group 1 to 3 . See Figure A-7.

The principle of interconnecting multiple matrices to build larger matrices is the same:

1. Establish the module building blocks (-45 A, B or C)
2. Establish external interconnect

Let's look at the configuration of an 8×64 matrix. Start with the Dual 4×32 matrix (1260-45B). Two modules will be required. Connect J200 on each module and J201 on each module to achieve the 8 rows. Connect J202 to J203 on each of the modules to give you the 64 columns. See Figure A-8.

We could easily have started with a 1260-45C, because in this example some paralleling of rows and columns was necessary.

The following table provides a list of a number of different configurations and how you would realize them with the 1260-45 module.

Configuration	Start With	Cabling Used
4×64	$1260-45 B$	Rows with LB
8×32	$1260-45 B$	Columns with LB
16×16	$1260-45 \mathrm{C}$	Columns with LB
8×64	4×642 modules	Columns with LBBM
16×32	8×322 modules	Columns with LBBM

Note: LB refers to the loopback connector used to connect J200 to J201 (rows) or J202 to J203 (columns). LBBM refers to the loopback connector connecting the rows or columns on adjacent modules.

Also remember, all of these configurations can be made from the 126045A module. The covers must be removed to access the on-board jumpers to turn the module into a B or C version.

Figure A-2, J200 \& J202 Block Diagram

Figure A-4, 1260-45A Quad 4X16 Matrices

Figure A-5, 1260-45B Dual 4X32 Matrices

Figure A-6, 1260-45C Dual 8X16 Matrices

Figure A-7, 1260-45B Configured as 4X64 Matrix

Figure A-8, 1260-45B Configured as $\mathbf{8 X 6 4}$ Matrix

